Solving Multiclass Learning Problems via Error-Correcting Output Codes
نویسندگان
چکیده
منابع مشابه
Solving Multiclass Learning Problems via Error-Correcting Output Codes
Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k > 2 values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hxi; f(xi)i. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decision-tree algorithms C...
متن کاملEffectiveness of Error Correcting Output Codes in Multiclass Learning Problems
Classification (machine learning): How does one algorithmically classify the though a more effective approach could be using error correcting codes: @(cs/9501101) Solving Multiclass Learning Problems via Error-Correcting Output Codes. to solving machine learning problems can be broadly useful.
متن کاملSolving Multiclass Learning Problems viaError - Correcting Output
Multiclass learning problems involve nding a deenition for an unknown function f (x) whose range is a discrete set containing k > 2 values (i.e., k \classes"). The deenition is acquired by studying collections of training examples of the form hx i ; f (x i)i. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decision-tree algorit...
متن کاملError-Correcting Output Codes: A General Method for Improving Multiclass Inductive Learning Programs
Multiclass learning problems involve nding a deeni-tion for an unknown function f (x) whose range is a discrete set containing k > 2 values (i.e., k \classes"). The deenition is acquired by studying large collections of training examples of the form hx i ; f (x i)i. Existing approaches to this problem include (a) direct application of multiclass algorithms such as the decision-tree algorithms I...
متن کاملOnline error correcting output codes
This article proposes a general extension of the error correcting output codes framework to the online learning scenario. As a result, the final classifier handles the addition of new classes independently of the base classifier used. In particular, this extension supports the use of both online example incremental and batch classifiers as base learners. The extension of the traditional problem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Artificial Intelligence Research
سال: 1995
ISSN: 1076-9757
DOI: 10.1613/jair.105